2d-okna.ru

2Д Окна
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пределы огнестойкости силикатного кирпича

Расчёт огнестойкости железобетонных конструкций с применением системы «Теплопроводность» в ЛИРА САПР

Требования нормативных документов при расчёте пределов огнестойкости

Требования к пределам огнестойкости строительных конструкций содержатся в СНиП 21-01-97*, в таблице 4, а также в таблице 21 ФЗ-123.

Степень огнестойкости зданий, сооружений и пожарных отсеков Предел огнестойкости строительных конструкций
Несущие стены, колонны и другие несущие элементы Наружные ненесущие стены Перекрытия междуэтажные (в том числе чердачные и над подвалами) Строительные конструкции бесчердачных покрытий Строительные конструкции лестничных клеток
настилы (в том числе с утеплителем) фермы, балки, прогоны внутренние стены марши и площадки лестниц
I R 120 E 30 REI 60 RE 30 R 30 REI 120 R 60
II R 90 E 15 REI 45 RE 15 R 15 REI 90 R 60
III R 45 E 15 REI 45 RE 15 R 15 REI 60 R 45
IV R 15 E 15 REI 15 RE 15 R 15 REI 45 R 15
V не нормируется не нормируется не нормируется не нормируется не нормируется не нормируется не нормируется

Согласно СТО 36554501-006-2006, п.4.4: за предел огнестойкости железобетонных конструкций принимают время в минутах от начала огневого стандартного воздействия до возникновения одного из предельных состояний по огнестойкости:

  • по потере несущей способности R конструкций и узлов (обрушение или недопустимый прогиб в зависимости от типа конструкций);
  • по теплоизолирующей способности I — повышение средней температуры на необогреваемой поверхности до 160 °С по сравнению с температурой конструкции до нагрева, или прогрев до 220 °С независимо от температуры конструкции до огневого воздействия;
  • по целостности Е — образование в конструкции сквозных трещин или сквозных отверстий, через которые проникают продукты горения и пламя.

4.12 Передел огнестойкости железобетонной конструкции наступает при прогреве рабочей арматуры в конструкции до критической температуры, а также при нагреве бетона в расчётном сечении выше его критической температуры.

Расчёт предела огнестойкости по СТО 36554501-006-2006

где τ — время нагрева, мин;
te — начальная температура, °С.
При начальной температуре te = 20 °С, по уравнению (6.4) температура среды поднимается в зависимости от времени огневого воздействия (табл. 6.1)

Время, мин. t, °С Время, мин. t, °С Время, мин. t, °С
5 576 50 915 120 1049
10 679 60 945 150 1082
15 738 70 970 180 1110
20 781 80 990 210 1133
25 810 90 1000 240 1153
30 841 100 1025 270 1170
40 885 110 1035 300 1186

Решение задачи нестационарной теплопроводности сводится к определению температуры бетона в любой точке поперечного сечения в заданный момент времени.

Реализация расчёта нестационарной задачи теплопроводности в ЛИРА САПР

Этап 1. Моделирование сечения

Для решения этой задачи, следует смоделировать поперечное сечение конструкции в 15-м признаке схемы

Этап 2. Назначение жёсткостей

Смоделированным элементам следует назначить типы жёсткости

Этап 3. Задание внешней нагрузки. Предыстория (исходное состояние)

В загружении 1, следует выделить все узлы схемы и задать в них нагрузку, которая будет соответствовать исходной температуре конструкции – 20 °С. После задания нагрузки на узлы, они окрашиваются в зелёный цвет.

Этап 4. К элементам конвекции, следует приложить внешнюю нагрузку.

В загружении № 5 к стержням по периметру сечения прикладываем заданную температуру в 1 °С. Загружения 2-4 оставить свободными. После задания нагрузки на элементы, они приобретают оранжевый цвет.

Значение температуры 1 °С служит для формирования динамического загружения, которое будет строиться на основе графика температур при пожаре в определённый момент времени. Температура по графику будет умножаться на значение 1 °С, и имитировать внешний нагрев сечения.

Этап 5. Задание пожара.

Нажатием на кнопку Формирование динамических загружений из статичестких, вызвать окно для ввода параметров динамической нагрузки. Динамика формируется их 5-го загружения (конвекции). Номер самого динамического загружения, по умолчанию, выбран третий. Выбрать закон преобразования (Ломаный с произвольным шагом или Тепловое излучение). Задать количество точек 22 (21 – по таблице 6.1 + 1 – нулевой момент). Подтвердить ввод количества точек. В появившейся таблице задать закон изменения температуры. В левом столбце вводить время (в секундах), в правом температуру из таблицы 6.1.

Время, мин. Время, сек. t, °С Время, мин. Время, сек. t, °С Время, мин. Время, сек. t, °С
5 300 576 50 3000 915 120 7200 1049
10 600 679 60 3600 945 150 9000 1082
15 900 738 70 4200 970 180 10800 1110
20 1200 781 80 4800 990 210 12600 1133
25 1500 810 90 5400 1000 240 14400 1153
30 1800 841 100 6000 1025 270 16200 1170
40 2400 885 110 6600 1035 300 18000 1186

После ввода значений зависимости время-температура, следует нажать +, чтобы подтвердить создание динамической нагрузки.

Вызвать окно задания параметров динамики во времени:

После задания параметров, следует выполнить расчёт.

Этап 6. Чтение результатов.

На рисунке показаны изополя температур на 9000-й секунде расчёта, что соответствует пределу огнестойкости R150. По значению температуры, в местах установки арматурных стержней, можно сделать вывод: обеспечен требуемый предел огнестойкости или нет.

Расчёт огнестойкости простых сечений

В ПК ЛИРА САПР реализован автоматический расчёт огнестойкости простых сечений, т.е. тех, для которых подбирается арматура в пятом признаке схемы. При задании параметров материалов, в свойствах Типа следует отметить учёт огнестойкости. В диалоговом окне следует задать параметры горения.

Арматура будет подобрана с учётом требований огнестойкости.

Для сложных и нестандартных сечений, следует воспользоваться 15-м признаком схемы.

Огнестойкость газобетона

Газобетон — современный популярный строительный материал, который относится к виду ячеистых бетонов. Он изготавливается с использованием извести, песка, воды и газообразующих смесей. Специфичные пузырьки, которые составляют структуру газобетона, появляются при взаимодействии с известью, в результате которого возникает водород. Пористость является залогом прочности материала.

Основные преимущества газобетона:

  • Экологичность,
  • Огнестойкость газобетонных блоков,
  • Устойчивость к заморозкам,
  • Высокая теплоизоляция,
  • Легкость в транспортировке, обработке и монтаже,
  • Долговечность,
  • Экономность и финансовая доступность.

Таблица: Динамика физических свойств автоклавного газобетона при нагревании

Температура
нагрева
автоклавного
газобетона
в течение
30 мин,°С
Прочность
на сжатие
(МПа)
Масса
образцов %
Объем
образцов %
Цвет Наличие
трещин
на поверхности
100 2,0 100 100 Исходный серовато- белый нет
300 1,8 98 100 Легкое потемнение нет
500 1,6-1,7 96 100 Потемнение до серого нет
700 1,4 94 100 Потемнение до серого да
900 1,2 93 100,14 Осветление серого да
1000 89 100,14 Ярко белый да

Материал обладает высокой огнестойкостью, ввиду того, что в его составе нет компонентов, располагающих к эффективному воспламенению. Строения, заборы и другие объекты, созданные с использованием изделий этого типа, имеют высокую пожаробезопасность, которая измеряется в степени огнестойкости газобетона. Этим изделиям присваивают I и II степень.

Под огнестойкостью газобетона подразумевают способность материала сопротивляться воздействию огня в процессе возгорания. Такой показатель зависит от плотности материала: чем она выше — тем больше огнестойкость газобетона. При воспламенении прочность материала изменяется в зависимости от температуры:

  • При возрастании до 400°С материал становится прочнее до 85%,
  • При 700°С прочность возвращается к стандартным показателям,
  • При нагреве до 100°С материал становится менее прочным.

Предел огнестойкости газобетона

В зависимости от показателей огнеупорности все строительные материалы обладают конкретным пределом огнестойкости, который дает понимание о максимальной сопротивляемости изделия при воспламенении. Эта характеристика рассчитывается с учетом времени, затраченного на воздействие огня на материал с принятием во внимание момента начала процесса и момента проявления повреждений материала.

При низкой огнестойкости бетона первыми разрушениями, которые проявляются на изделии, становится возникновение трещин, возрастание температуры поверхности изделия в противовес к обогреваемой больше чем на 140°С, увеличение t более чем на 180°С в сравнении с началом воздействия, повышение до 120°С, несмотря на первоначальные данные и финальное обрушение конструкции.

В сравнении с другими однослойными конструкциями огнестойкость газобетона имеет самые высокие показатели. Специфика структуры, которая подразумевает наличие пузырьков, а также отличная теплоизоляция материала сохраняют блоки от разрушения, которые характерны для бетона при испарении или выделении влаги. Под воздействием огня изделие нагревается постепенно, а недолгое, но сильное воспламенение приводит к наличию усадочных трещин на блоке. Эти повреждения не влияют на способность выдерживать высокие нагрузки.

Благодаря высокому пределу огнестойкости газобетонных блоков они оказываются самым приемлемым материалом для возведения зданий и сооружений, в которых должны быть соблюдена пожаробезопасность. Их используют для строительства зданий, предусмотренных для размещения производств, а также при кладке стен в противопожарных отсеках.

Купить газобетонные блоки, которые не будут подвержены разрушению при воздействии огня и высоких температур, можно на сайте компании «УниверсалСнаб».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector