2d-okna.ru

2Д Окна
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейное тепловое расширение кирпича

ГОСТ 15173-70* Пластмассы. Метод определения среднего коэффициента линейного теплового расширения

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОД ОПРЕДЕЛЕНИЯ СРЕДНЕГО
КОЭФФИЦИЕНТА ЛИНЕЙНОГО
ТЕПЛОВОГО РАСШИРЕНИЯ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОД ОПРЕДЕЛЕНИЯ СРЕДНЕГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО ТЕПЛОВОГО РАСШИРЕНИЯ

Plastics. Method for determination of mean
coefficient of linear thermal expansion

ГОСТ
15173-70 *

Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 13/ I 1970 г. № 33 срок введения установлен

Постановлением Госстандарта от 09.08.82 № 3122 срок действия продлен

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на пластмассы и устанавливает метод определения их среднего коэффициента линейного теплового расширения.

Метод предусматривает определение линейного теплового расширения, не связанного с изменением размеров при нагреве вследствие изменения содержания влаги, отверждения, потери пластификатора или растворителя, снятия внутренних напряжений и других факторов, и поэтому является приближенным.

Стандарт полностью соответствует СТ СЭВ 2899-81.

1. СУЩНОСТЬ МЕТОДА

1.1. Сущность метода состоит в испытании образца пластмассы, при котором определяют:

а) средний коэффициент линейного теплового расширения в минимальном интервале температур α t ;

б) средний коэффициент линейного теплового расширения в установленном интервале температур ( t 1 и t2 — граница установленного интервала температур).

1.2. Средний коэффициент линейного теплового расширения характеризует относительное приращение длины образца, вызванное повышением его температуры от нижней до верхней границы интервала, отнесенное к величине этого интервала.

В тех интервалах температур, где коэффициент линейного теплового расширения изменяется с температурой, величины α t и , как правило, не совпадают, причем α t может быть как больше, так и меньше . Поэтому замена одного коэффициента другим не допускается.

Определение среднего коэффициента линейного теплового расширения не проводят в интервале температур t2 — t 1 -6 °С -1 и в интервале температур t2 — t 1 -6 °С -1 . Допускаемые погрешности указаны в таблице.

Относительная погрешность определения в интервале температур 10 °С, %

°С -1

Погрешность измерения температуры и удлинения образца

Измерение удлинения проводят с погрешностью не более 10 -6 м для любых значений коэффициента линейного теплового расширения. Если в процессе нагрева используют теплоноситель, то он не должен влиять на результаты определения.

(Измененная редакция, Изм. № 1).

Выбор интервала температур и требования к точности измерения температуры и удлинения при определении коэффициента линейного теплового расширения предусматриваются в стандартах и технических условиях на пластмассы.

1.4. Средний коэффициент линейного теплового расширения в минимальном интервале температур α t определяют в интервале температур, равном 10 °С, и относят к средней температуре этого интервала.

1.6. Определение средних коэффициентов линейного теплового расширения не производят при температуре выше температуры размягчения пластмасс, определяемой по ГОСТ 12021-75, при большей из двух предписываемых для данного материала нагрузок.

Нижняя граница установленного интервала температур t1 или нижнее значение средней температуры минимального интервала предусматривается в стандартах и технических условиях на пластмассы.

В принятом интервале температур приращение длины образца в зависимости от температуры должно быть линейным. При нелинейной зависимости определение проводят в диапазоне температур, в котором выполняются требования линейности.

(Измененная редакция, Изм. № 1).

2. АППАРАТУРА

2.1. Средний коэффициент линейного теплового расширения определяют на приборе, имеющем:

а) термокриокамеру или другие устройства, обеспечивающие нагрев со скоростью не более 1,5 °С/мин в стационарном или нестационарном режимах или термостатирование в интервалах температур, указанных в п. 1.3 и поддержание одинаковой температуры с погрешностью не более 0,2 °С по всей длине образца;

б) устройство, в которое помещают образец, и систему, передающую его расширение на индикатор для измерения удлинения; система должна быть выполнена из материала с наименьшим коэффициентом линейного теплового расширения (рекомендуется использовать плавленый кварц) и должна обеспечивать компенсацию собственного теплового расширения. Если компенсация отсутствует, удлинение образца должно быть откорректировано с учетом удлинения материала, из которого выполнена система. Если система выполнена из плавленого кварца, при испытании материалов со средним коэффициентом линейного теплового расширения более 0,6·10 -6 ° C -1 , коррекцию не проводят;

в) устройство для измерения приращения длины образца при ее увеличении или уменьшении в процессе нагрева путем визуального отсчета или с помощью автоматической записи; устройство не должно оказывать на образец давления более чем 29 кПа;

Читайте так же:
Древние технологии производства кирпича

г) термодатчик, термометр или термопару с индивидуальной градуировкой для измерения температуры образца с погрешностью не более 0,1 °С.

(Измененная редакция, Изм. № 1).

2.2; 2.2.1. (Исключены, Изм. № 1).

2.2.2. При определении в интервале температур, равном или большем 60 °С с максимальной погрешностью не более 10 %, температуру измеряют с погрешностью не более ± 1 °С, а удлинение с погрешностью:

± 1 мкм — при , равном или более 5·10 -6 град -1 ;

± 5 мкм — при , равном или более 30·10 -6 град -1 ;

±10 мкм — при , равном или более 70·10 -6 град -1 .

3. ИЗГОТОВЛЕНИЕ ОБРАЗЦОВ

3.1. Для испытания используют образцы длиной не менее 50 мм, круглого (диаметром (10 ± 0,5) мм) или квадратного поперечного сечения со стороной (7 ± 0,5) мм.

При возникновении разногласий для испытания применяют образцы длиной 50 мм.

3.2. В середине боковой поверхности образца, перпендикулярно к ней, высверливают отверстие диаметром 1 мм до осевой линии образца. Оно предназначено для последующего введения в образец термодатчика или термопары при испытании в нестационарном режиме.

3.3. Поверхность образца должна быть ровной, гладкой, не иметь раковин, трещин и других дефектов. Торцы должны быть перпендикулярны к продольной оси образца.

Если при проведении испытания происходит внедрение в образец контактирующей с образцом части устройства, передающего удлинение на индикатор, то на торцы образца наклеивают гладкие стальные пластинки толщиной до 0,5 мм. Используемый клей должен быть нейтральным по отношению к проверяемым пластмассам.

3.1-3.3. (Измененная редакция, Изм. № 1).

3.4. Из листовых анизотропных материалов образцы вырезают по главным осям анизотропии так, чтобы ось образца совпадала с осью анизотропии. Коэффициент линейного теплового расширения для анизотропных материалов определяют для каждой оси анизотропии.

3.5. Количество образцов для испытания от каждой партии материала и для каждой оси анизотропии должно быть не менее трех.

3.6. Способ и режим изготовления образцов и их термообработка предусматриваются в стандартах или технических условиях на пластмассы.

Если образец в процессе испытания проявляет усадку, его необходимо термообработать при наибольшей температуре. Время термообработки должно быть не менее чем в пять раз больше времени испытания.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Перед испытанием устанавливают температурные границы, в которых будет измеряться коэффициент линейного теплового расширения согласно требованиям стандартов и технических условии на пластмассы и пп. 1.3 — 1.5 .

4.2. Длину образца измеряют с погрешностью не более 0,01 мм при температуре (23 ± 2) °С и относительной влажности (50 ± 5) %.

4.3. Определение коэффициента линейного теплового расширения производят в стационарном или нестационарном режимах.

При стационарном режиме проводят термостатирование образца при температуре измерения до тех пор, пока не окончится удлинение образца. Температуру в термокамере доводят при стационарном режиме до температуры t1.

При нестационарном режиме образец нагревают до температуры не менее чем на 10 °С ниже нижнего температурного предела измерения.

4.2; 4.3. (Измененная редакция, Изм. № 1).

4.4. (Исключен, Изм. № 1).

4.5. Образец устанавливают в термокриокамере и вводят в него термопару или термодатчик, если испытания проводят в нестационарном режиме. В случае испытания только в стационарном режиме установка термопары в образце необязательна.

При нестационарном режиме испытания после достижения в образце температуры не менее чем на 10 °С ниже нижней температурной границы измерения настраивают указатель удлинения на начало измерения и начинают нагрев со скоростью не более 1,5 °С·мин -1 .

При стационарном режиме испытания образец термостатируют при температуре t1, затем при температуре t2 и снова при температуре t1.

За начало отсчета принимают показание указателя удлинения при температуре, равной нижней температурной границе.

Измерение приращения длины образца производят при температурах, соответствующих границам интервала.

4.6. Если при стационарном режиме разность результатов измерения при переходе от t1 к t2 и обратно менее 10 мкм на каждые 100 мкм удлинения, то измерение проведено удовлетворительно. При разности более 10 мкм на каждые 100 мкм удлинения, измерение повторяют. Сравнение результатов испытания проводят для каждого образца отдельно.

4.7. Если при нестационарном режиме в материале возникают необратимые изменения длины, то проводят повторный цикл испытаний на том же образце. Допустимая разница удлинения при первом и повторном измерениях — не более 10 мкм на каждые 100 мкм удлинения для одного и того же образца. Если разность в удлинениях больше, то измерение повторяют. За результат принимают данные второго испытания.

Читайте так же:
Как отмыть водоэмульсионную краску с кирпича

4.5 — 4.7. (Измененная редакция, Изм. № 1).

5. ПОДСЧЕТ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

5.1. Средний коэффициент линейного теплового расширения ( α) в °С -1 вычисляют по формуле:

где: Δ l — приращение длины образца в границах интервала температур, мм;

t1, t2 — нижняя и верхняя границы интервала температур, °С;

l — длина образца при (23 ± 2) °С, мм.

(Измененная редакция, Изм. № 1).

5.2. Вычисление αt или производят отдельно для каждого образца и для каждой главной оси анизотропии.

5.3. За результат испытания для каждой партии материала и каждой главной оси анизотропии принимают среднее арифметическое значений отдельных образцов, с округлением до 1·10 -6 ° C -1 .

5.4. Протокол испытания должен содержать следующие данные:

а) наименование и марку материала;

в) способ изготовления образцов;

г) форму и размеры образцов;

д) температуру и время термообработки;

е) пределы температур, в которых испытан материал и режим испытания;

ж) среднее арифметическое значение коэффициента линейного теплового расширения;

з) тип аппаратуры, на которой выполнено измерение;

Расчет температурного линейного расширения

Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.

К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.

Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.

Как определить температурное линейное расширение

Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:

  • коэффициент линейного теплового расширения;
  • удлинение по осям Х, Y и Z;
  • величину, на которую удлиняется материал при заданной температуре.

Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.

Какие материалы чаще всего подвергаются расширению

Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:

  • клинкерный и стеновой кирпич;
  • дерево;
  • штукатурка;
  • базальт;
  • стеновой кирпич.

Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле

dL = a • l • (tmax – tc), мм, где:

  • а – КТЛР материала, из которого изготовлена труба или другое изделие;
  • tmax – наибольшая температура, которой достигает теплоноситель;
  • tс — температура окружающей среды на момент установки конструкции;
  • l — длина трубопровода.

Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.

Читайте так же:
Как прошить кирпич самсунг i8552

Коэффициент линейного теплового расширения [ править | править код ]

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C −1 ) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для сталей [ править | править код ]

Таблица значений коэффициента линейного расширения α, 10 −6 K −1 [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7
  • Таблица-справочник для некоторых металлов (PDF)
  • Коэффициент линейного расширения сталей по ПНАЭ Г-7-002-86

Wikimedia Foundation . 2010 .

  • Коэффициент теплопроводности
  • Коэффициент трения

Полезное

Смотреть что такое «Коэффициент термического расширения» в других словарях:

коэффициент термического расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of thermal expansionCTE … Справочник технического переводчика

Сотовый поликарбонат — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/7 сентября 2012. Пока процесс обсуждения не завершён, статью можн … Википедия

ситаллы — стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Высокая прочность, твёрдость, химическая и термическая стойкость, низкий температурный коэффициент расширения.… … Энциклопедический словарь

Пластические массы — пластмассы, пластики, материалы, содержащие в своём составе полимер (См. Полимеры), который в период формования изделий находится в вязкотекучем или высокоэластичном состоянии, а при эксплуатации в стеклообразном или кристаллическом… … Большая советская энциклопедия

Гей-Люссака законы — 1) закон теплового расширения газов: объём V данной массы идеального газа при постоянном давлении линейно возрастает с температурой: Vt = V0(1 + αt), где V0 и Vt соответственный первоначальный объём газа и при температуре t, α изобарный… … Энциклопедический словарь

Читайте так же:
Тенденции рынка керамического кирпича

Колебания кристаллической решётки — один из основных видов внутренних движений твёрдого тела, при котором составляющие его частицы (атомы или ионы) колеблются около положений равновесия узлов кристаллической решётки. К. к. р., например, в виде стоячих или бегущих звуковых… … Большая советская энциклопедия

Лазерная нанокерамика — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/17 октября 2012. Пока процесс обсужден … Википедия

Магниевые сплавы — сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов … Большая советская энциклопедия

глазурь — и; ж. [нем. Glasur от Glas стекло]. 1. Стекловидное покрытие на керамических изделиях, закреплённое обжигом. Покрывать кувшины глазурью. 2. Застывший сахарный сироп. Орехи в глазури. // Слой густого сладкого сиропа (из сахара, шоколада и т.п.), в … Энциклопедический словарь

Кирпич — У этого термина существуют и другие значения, см. Кирпич (значения) … Википедия

Расчет температурного линейного расширения

Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.

К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.

Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.

Как определить температурное линейное расширение

Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:

  • коэффициент линейного теплового расширения;
  • удлинение по осям Х, Y и Z;
  • величину, на которую удлиняется материал при заданной температуре.

Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.

Какие материалы чаще всего подвергаются расширению

Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:

  • клинкерный и стеновой кирпич;
  • дерево;
  • штукатурка;
  • базальт;
  • стеновой кирпич.

Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле

dL = a • l • (tmax – tc), мм, где:

  • а – КТЛР материала, из которого изготовлена труба или другое изделие;
  • tmax – наибольшая температура, которой достигает теплоноситель;
  • tс — температура окружающей среды на момент установки конструкции;
  • l — длина трубопровода.

Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.

Читайте так же:
Как выбросить один кирпич

В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.

Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.

Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 10 6 .
Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 10 6 , это значение составляет 22,8·10 -6 1/град.

Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10 -6 при 0°С до 5,8·10 -6 1/град при температуре 2100°С.

Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10 -6 до 34·10 -6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.

Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.

Монтаж с учетом показателя линейного расширения

При монтаже трубопровода для горячего водоснабжения и отопления (в т.ч. системы «теплый пол») обязательно нужно учитывать удлинение трубы в результате воздействия высокой температуры.

Оптимальный выбор изделий для установки трубопровода – армированные трубы со стекловолоконным или алюминиевым внутренним слоем. Армирование — слой фольги или стекловолокна — поглощает часть тепловой энергии от теплоносителя и сокращает коэффициент температурного расширения полимера. Благодаря этому потребность в компенсации физических изменений будет также снижена.

Правила монтажа труб с учетом линейного расширения:

  • между трубопроводом и стеной в помещении необходимо оставить небольшой зазор, т.к. трубы могут отклоняться от своей оси при нагреве и идти волнообразно;
  • особенно важно оставить небольшие зазоры в углах помещений, где трубы соединяются поворотными муфтами или фланцами;
  • на длинных участках трубопровода устанавливают специальные компенсаторы линейного расширения, которые одновременно фиксируют трубопровод в своей плоскости, но позволяют ей смещаться по направлению монтажа;
  • желательно снизить количество жестких стыков, чтобы обеспечить гибкость трубопроводу.

В некоторых системах горячего водоснабжения и отопления на базе армированных и неармированных изделий можно увидеть различные способы т.н. самокомпенсации температурного расширения за счет упругой деформации полипропилена.

Чаще всего используются петлеобразные компенсирующие участки – кольцевые повороты с подвижной фиксацией на стене. Петля, полученная в результате такой установки, сжимается и расширяется при нагревании/остывании теплоносителя, не влияя на положение и геометрию трубопровода на остальных участках.

Компенсаторы расширения труб

Кроме самокомпенсации, предотвратить деформацию труб в результате температурного расширения можно с помощью дополнительных приспособлений – механических компенсаторов. Они устанавливаются на Г- и П-образных участках трубопроводов и представляют собой скользящие опоры, через которые проходит труба.

Специальные компенсаторы расширения делятся на несколько типов:

  1. Осевые (сильфонные) – приспособления в виде двух фланцев, между которыми находится пружина, компенсирующая сжатие и расширение участка трубопровода. Крепятся неподвижно к опоре.
  2. Сдвиговые – используются для компенсации осевого отклонения участка трубопровода при температурном расширении.
  3. Поворотные – устанавливаются на участках поворота магистрали для уменьшения деформации.
  4. Универсальные – объединяют расширения во всех направлениях, компенсируя поворот, сдвиг и сжатие трубы.

Компенсатор Козлова

Существует также новый вид устройства, названный в честь своего разработчика – компенсатор Козлова. Это более компактное устройство, внешне напоминающее участок трубопровода из полипропилена.

Внутри компенсатора находится пружина, которая поглощает энергию расширения труб в пределах участка, сжимаясь при нагреве воды и расширяясь при остывании. Преимущество компенсатора Козлова перед другими видами приспособлений – более легкий и простой монтаж, а также сокращение расхода арматуры.

В отличие от петлеобразного участка, при монтаже компенсатора Козлова достаточно соединить участок труб фланцевым или сварным способом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector